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The general single-period optimal portfolio selection problem is

the following: An investor wishes to invest his wealth in certain risky

* assets, each of which ha. a constant scale of return that is a random

variable. Re could a1~o borrow or lend and the interest rates for borroving

and tending are assumed to be the same and fixed. The latter is r.f erred

to as the risk-free (or safe) asset. The objective of the investor is to

maximize his expected utility of wealth subject to his budget constraint

and certain federal or other personal restrictions.

- - 
In Lintner 1 13 ] and Ziemba et al. 1 18 1. it was shown that the

problem can be solved by a two-stage procedure, provided that the investor

has a concave utility function and that the asset returns have a multinormal

distribution. In stage 1 , one solves a certain fractional program having as

variables the proportions invested in the risky assets. In stage 2, one

- , uses the optimal solution obtained in stage 1 to solve a certain stochastic

program having one single variable which represents the proportion invested

in the safe asset.

In a recent paper, by making certain special assumptions about the

covariances of the risky assets, Elton, Gruber and Padberg ( 7 ] have

derived some procedures for the solution of the fractional program.

Unfortunately, their derivation was based on a wrong set of necessary and

sufficient conditions for the program.

Our objective in this paper is to develop an efficient method for the

numerical solut ion of the fractional program arising in th. firs t stage of/> .~
the portfolio problem. The second stage is oft .n very easy to solve . / 0

/ I
See [ 18 1. 

/

1’ ~~~

The organization of the paper is the following : We first show /~

_ _ _  
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that the fractional program can be rafo~~~lated as a certain equivalen:

linear compleinentarity problem which forms the Kuhn-Ticker necessary and

sufficient conditions of optimality for a certain (strictly) convex

quadratic program. Then, by establishing a theorem which shows how the

compl~~~ntarity problem can be effective ly solved by a simplified versi on

of the parametric principal pivoting algorithm as described in Pan g 1 14 1,

vs derive an efficient algorithm for solving the problem. We shall also

outline how the propo sed algorithm can be profitably app lied to a specific

model with upper bounds . Finally we shall report some computati onal

resu lts including a brief comparison of our proposed algorithm and Lemke’ 5

(see L.mke t 12 D.

1. THE LINEAR CO1~~LEMENTARIT! EQUIVALENCE

La the case where short selling is allowed is computationally much

easier to handle, this paper treats only the case where short selling is

prohibited.

• 
The fraction a l program under consideration can then be stated as:

maximize T , 
~ (mI T Vx’)1 (1)

subj.ct to .T~~~.i , Cx ’ < d  and x’ >O .

Here V is the n x n sy stric covariance matrix of the (stochastic) returns

of th . risky assets and is assumed to be nonsiugular (or equivalently ,

positive definite), ~i is the n-vector of expected asset returns in excess

• of the risk-fr.. return, x’ is the n-vector of proportions of wealth

invested in each asset , e is the vector of l ’ s and n is the total number

of risky assets under consideration. The matrix C is m by n.

_ _  
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3

The theorem below shows that the program is equivalent to a linear

complementarity problem. It is an extension of a result established in

• ( 18 1 for the specia l case where the constraints CX’ ~ d are not present.

Theor em 1. Suppose that problem (1) is feasible and that ~~~ > 0 for
sass feasible x’ . Then problem (1) is equiva lent to the linear

ccuiplemantarity probl em

u — - ~ + Vx + (CT 
- edT)y > 0 x > 0 (2)

v - ( C - d e T)x > 0

T T
u x — v y — 0

in the sense that there is a one-to-one correspondence between the

optimal solutions to (1) and the complementary solutions to (2).

Remark 1. The assumption (~
Tx, > 0) has the interpretation that the

total expected return is positive for some feasible portfolios x’.

Remark 2. The feasibility of (1) is important for the equivalence to

hold. In fact, simple examples can be constructed so that (2) ha. a

complementary solution but (1) is- infeasible.

Proof of the theorem. Since the objective function in (1) is

homogeneous in x ’, the problem is equivalent to

maximize ix” I (x,,TVxa1)* (1’)

subject eo CxI~~< d e TxhI , x”~~~0 and x”~~~0

~~~~~~~ 0_ ~ ••-~~~ -~~ - ----~~~~~•—•• ~~~~~~~~~~~~~~~~~~~~~~~~ 0 _____
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under the transfo rmation x’ — z”/ •
Tx” . We show that this latter program

0
1 

is equivalent to the convex quadratic program below

minimize Ix’Vx - ~~ subject Cx< deTx and z 
~~ 
0 . (2’)

Indeed , let x” be an optimal solution to (1’). We observe that

> 0 so that the vector — ( ix” / x1~TVxt~)z~ is feasible for (2’).

Moreove r , we have

~ 
~T gj - ~~ — - ~~TXl,) 2 / x,,Tvxu <o

Let y be a feasible solution to (2’) with ~7
T
v7 - ~T

7 < ~ . Then y p~ 0

is feasible f o r (l ’) an d ve have ~Ty > i y Tv y > o  . Thus

- ~~ > - ~~~T7)2 / 7T~7 >  - ~( TxtI)Z / ~~~~~ — ~~T~j -

Therefore ~ is optimal for (2’). Conversely, let ~ be an optimal solution

to (2’). We claim ~~ > 0. Indeed , if u,T~ < 0  and if x La a feasible

0 solution for (2’) such that 1T~ >0 , then since the vector y — (Ii
Tx / x TVx)x

is also feasible for (2’), we have

~ ~~~ ~~~~~~ - ~T7 - - ~~~Tx)2 /

which is impossible. Therefore ~~ > 0 . Similarly , we m a y  deduce that

— ~~Vi . Nov let x” be a feasible solution to (1’) with ix” > 0.

Then the vector x — (~Txf / x ~TVx~,)x1, is feas ible to ( V) .  Hence, we have

• 

- ~~~T~)2 
,~ ~
l
~j  — - ~~~ <-j ~x~vx - ~~~ - *(~&Txt,)2 /

which implies

/ (xTV~)*> ~~~ ~ (x
hITVxhI)~

— ~ i~ -~~-—---—-——----- — --— — 

-~~~
- — ---—
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Therefore is optimal for (1’). The proof can now be completed by noting

that the problem (2) is precisely the set of Kuhn-Tucker necessary and

sufficient conditions of optimality for the quadratic program (2’).

2. I~~ PARAMETRIC APPROACH

Among the various algorithms which can be used to solve the linear

complementarity problem (2) is the parametric version of Graves’

principal pivoting algorithm (see Graves[ 9 1 for the original non-parametric

version and Cottle ( 2 1 for the parametric version). A typical pivot

step of the algorithm is outlined as follows: Given a parametric linear

complementarity problem in the canonical form 0

w — r + )~s+Mz

where ). is currently of some positive value £ such that r + ~s ~ 0 and 
0

+ — 0 for some k, we first pivot 5k into the basis and Vk out of

the basis if m.~ # 0 (known as a 1 x 1 diagonal pivot). Else we increase

to a value until some r~, + $s~, becomes zero, in which case we pivot

on ~~~ and m~~ (a 2 x 2  block pivot) .

It is a rather well-known fact that if the diagonal pivot entry is

positive in each step and if each pivot is nondegenerate (see ( 9 I for

the handling of degeneracy), the algorithm always terminates with a solution 
0

to the linear casplementarity problem

v — r + M z>O , z�0 and zZv~~~0

in a finite number of steps (when ). reaches zero) . A sufficient condition 0

L - 
_ _ _  _ _ _ _ _  ~~~- - * ~~~~ ~~~~~ -=--= -

~~~ —~ - ~~~~~~~ii~~ 
— 
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for the diagonal pivot entries to be positive is that the original matrix N

should have all principal minors positive.

The matrix N in problem (2) which is given by

f v  AT
M f  (3)

0

where A — C - deT, certainly does not satisfy this sufficient condition.

Nevertheless , as the next theorem shows, the same assertion about the

diagonal pivot entries remains valid for the problem. The proof of the

theorem is given in the Appendix.

Theorem 2. Consider the solution of the linear complementarity problem

(2) by the parametric algorithm described above, where the parametric vector s

is chosen as s — (
~
) . Then the diagonal pivot entry in each pivot step is

0 positive. In other words, the problem can be solved by performing the 1 x 1

diagonal pivots exclusively.

• Remark. The positive definiteness of V is important for the theorem to

hold. In fact Graves ( 9 ] shoved that all the pivots are 2 x 2 if V is

the zero matrix.

As explained in ( 14 1, the only information one needs to have in order

to execute the 1 x 1 diagonal pivots consists of (i) the index set of the

currently basic s-variables, (ii) the current constant (r - ) column and
(iii) the current parametric ( .- )  column. The update of the matrix N is

entirely unnecessary .

Applying this idea to the problem (2), we may formulate the algorithm

I - • - - - • -~~~~~~~ •
- -

~~~~~~~~~~~~~~~

- -
~~~~~~~~~~~~ 

•
~~~~~

- -

~~~~~~ -~~~ -~~~~~~~~~. ~~- —--~~~~~~~~~~~~
--

~~~
--- -— — - - -

~~~~

•- -

~~
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below. (See the Appendix for the explanation of the notations and

recall that A — C - deT wi th C being m by n .)

Algorithm for solving problem (2).

Step 0 (Initialization) Set ~ — 6 — 0 , ~ — [1,...,n) and ‘~‘ — C 1 ,...,m) .

Step I (Main computation) Solve the system of linear equations for (
~~ 

~
~~~ b~ J

V~~ (L5~~~\( ~~ ~ / ~ e~ \
_A

6B 0 ) I t b~ b~ ) I t O  ) 
(4a)

and compute

— ( ~~~~~ e~ - 

( 
V~~ (A6~)T) (;~ (4b)

• 
~~~ b~ J \ 0 0 J ~~~~~ 0 b~ b~ J

Step 2 (Ratio test) Determine

- • 

X max
~~

nmax C~ j
rei : j>O iE ~~3 ,  max [ i J ~~f~~~ :~~~ < 0 . j E a ) ,

max ( b~ /b~~:b~~> i E y 3 ,  max C b~ /b~~:b~~<0, j E 8f l  . 
0

If ~ < 0, terminate with the solution

and x~ — 0  .

• ~
Y6) It

b
~~) ~~

- 
Otherwise , let k be a maximizing index and continue .

k _______ 

-

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  — --~-—_ —-———
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Step 3 (Updating the index sets) Let

U C k 3  if ratio occurs at first maximt,~
• — 

fr ~..C k )  if ratio occurs at second maximum

otherwise

and u — (1,...,n1’~~. Update ~‘ and 5 in a similar fashion. Go to Step 1.

We point out that th. major computational effor t: required by the

algorithm is contained in Step 1. In general, th is step should best be

implemented by using an adaptive procedure (such as those described in

Gill et &t. ~ 8 ]) to take advantage of the change of the index set ~U6.

3 • A ~~DEL WITH UPPER BOUNDS

In [ 7 1, by. making certain assumptions about the covariance matrix V,

Elton cC al. studied several special cases of the following model

ma~-f in4 ze ~,Tx t / (Z ITVZV )I subject to eTx t — I and 0 ~ x’ ~ d (5)

which of course is equivalent to the comp lementarity probLem (2) with C being

the identi fy matrix of order n . We remark here that the linear complementarity

formulation used by the authors of the aforementioned reference is not the

correct one. Our purpose in this section is to outline how Step 1 of the

proposed algorithm can be greatly simplified by taking advantage of the face

that C is the identity matrix. En fac t , the entire algorithm can be carried

out by operating on the matrix V and the vectors ~ and d only.

Referring to the notations of the algorithm, we state the following

result.

Theorem 3. Throughout the solution procedure, 6 C ~

The ides of the proof is in fact quite simple . By making an inductive

_ _  _ _ _ _  
~~~ - 

-~~~ 
-j--
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assumption that the assertion is true before a certain pivot and then by

deriving an explicit expression for the current constant and parametric

col* s, it can be observed easily that the maximum ratio (in Step 2 of the

algorithm) will not occur at those rows corresponding to the basic variables

and ~~ in the current canonical tableau of the comp].ementarity system

(cf. (7) in the Appendix) . Consequently, the next pivot will not occur in

these rows , there by establishi ng the claim for this (and thus all subsequent)

pivot step (s) .

Results similar to this one have appeared in the study of quadratic programs

with only upper and lower bounds on the variables (see (14]) and in that of a

certain piecewise linear complementarity problem (see Kaneko (11 1). Roughly

speaking , 6 and ~ consist of those indices whose corresponding variables x~

and x~ are at their upper and lower bounds respectively , and ~“~~6 those that are

between the bounds . The theorem then says that a variable which is at one

extreme can not iianediately reach the other extreme without attaining some

intermediate values. Intuitively, this is quite obvious . The theorem also

permi ts one to ignore certain rows in the ratio test. This certainly is a

computational saving . For more discussion , see the above two references.

Consider now the solution of the system of linear equations (4a) .

According to Theorem 3, we may write ~ — 61J 11 with ~fl I~S — 0 . Defining

j
B(~ ,6) — ( V~~ ( A )T

\ 
-

0 )

as in the proof of Theorem 2 and recalling A — I - deT, ye may write

V,
~ 

V.116 - ~~~ \
B(J,6) — V6~ V~6 

- e6d~ +I 6

d6e~ 
d8a~ 

- 15 0

•-- - 0
~~

—-——•—---—
~~~~

-—-- 
~~~~~~~~~~~~~~~~~~~~~ 

— 

~~~~~~~~~ -- ••~ __- — 

-
:-

-•- — — — —
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where 16 denotes the identity matrix of order 6 
~~
. By defining

V~~ ~~~ 0 0 -e
11 e

11 
0

1~~,6) —

. 
V
811 

V66 I~ , E 1 (~ ,6) — 

~~6 , E2(6,6) — 0

0 -I~ 0 d5 0 0 d6

it is obvious that

B(J,6) — 1(0,6) + E 1 (J ,8) E2 (a, 5) T

which shows that B(~ ,6) differs from 1(0 ,6) by a rank-two matrix. By

an easy calculation, we may deduce

fv ~ o

- 1(0 ,6) _i 
— ( 0 0

15 V66 ~V5,~V1~V,~5

Hence , according to the Sherinan-Morrison-Woodbux Y formula (see

Householder [10, p.124] e.g.) we have

- 3(0,5)
_ i 

— 1(0,6)
_ i 

—

where

• V~~V 116d6 
- v~ e~ \

— i(0 ,6) 1E 1 (0, 6) — - d5 0 )
~~58 -V611

V~~ V 115 
)d5 V61~V~~e~.1-e5 I

~~~ 0 _____________ - - - 0 0 

• 
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 0~_~~~~~~~~~~~ -~~

— 
__ 0~ • 0__0__•

~
__0__

~ _ o _0~~0 0 •_0____
~

_ •~ _00 0_0 0 _0 — 0 - •- _~ .~ — ~~~~~~~~~~~~~~ - __ o~~~~~~~~~ V- 
~~~ - — —~~-—~~———-——-- ~—- — .—.~~
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i t

• e~V~~ 0 ~~~~~~~ -e~
— 12 (0,5) Tj ($,6) l

• d~V6~1
V~~ d~ d 66 V6.~V~~V 116

)

and

- 
G(J,6) — I2 +E 2 (O, 6) T1(O ,S)~~E 1(0,6)

— 1 + (e~V~~V 116 
- e~5d6 

- e~V~~e11

‘d~ (V56 
_ V

S,lV~~
V.TlS )da 1 +d~ (V5.1~V~~e1] 

- es))

Notice that this last matrix G(0,6) is 2x2. Hence , we obtain

(
~; !;) 

3(0 6Y~ ( M .

• — - 11 (0, 6)G (0 ,8)~~~(.~~~ ~~~

0 
, ~~~~~ ~~~~

where

— — —I(
~~ , e~) — V~~ (i~ , eQ -

and 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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, ~~) — (~
j ,
• 
, s~) - V6~(~~ , ~

) .

Consequently, the solution of (4a) can be achieved by the following
steps :

1. Solve the system of linear equations for (ã,~, ~~ ~

~~~~~~~~~~~~~~~~ — 6d6 , ~~~~, e~) (6a)

and Compute

(ç , , 
5) — (V65d6 , , e6) - V6~(a~ , (6b)

2. Solve the 2 x2  system of linear equations for / g~ ~i

(1 -d ~~ _ e
~~11 \f

~~ 

~\ — ( ~~~~ 4~11

~ 
d~a6 I _ d

6J~~~~ ~/ It d~~8 d~~5 •

3. Set

H ( a  r~~ ~~ 
- a~ 

_
1\

~’j ~ j

I~ b~ b~ J o 0 -d~ 0
- - 

1; ;~ a5 _;
~/

We point out that the major computat ional effort required to solve

(4a) has -now been reduced to the solution of (6*) and the computation of
(6b) . This reduction is significant because (6) involves only the matrix V
whos, size is one half that of M (of. (3)). -

Finally, we mention that similar savings can be achieved in computing (4b) .

____________________________ 
~~~~~~~~~~~~~ 0~~~
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4. COMPUTATIONAL RESULTS

In ordar to n* erically test the proposed parametric approach, we have

implemented it for solving s~~~ randomly generated problems of the type (5).

There are two families of problems being solved. Each of them is characteri zed

by a certai n form of - the covariance matrix. The reason that we have chosen these

particular families in the experimentation is because they are ~~~ng the most

cmnly used models in portfolio analysis. In the first family, the

matrix has the form

V _ t + L L T

where £ is an n x n diagonal matrix with positive diagona l entri es

and L is an n x m matrix with m much less than n. This structure arises

from an rn-index model ([14] and Sharpe (17]). Th. case m — 1 corresponds

to the single—index model (Sharpe (16]) .  The constant corr elation

coefficient model studi ed in Elton , Grub.r and Padber~ (5 , 7) also gives

rise to a covariance matrix having the above structure with m — 1.

• In the second family of pro blems solved , the covariance matrix is given

in partitioned form V — (V
u
) where for 1., j —

fi fJ T( )

—

‘• ~,l.
~
. + c~~~a.~~~& ,

where C — (cii) is an arbitrary N x N symeetric matrix of icalars , fi is

an Ni-vector and La an N~ x N~ diagonal matrix with positive diagonal

-I

__________ 

________ 

_____ 

- - - -

_ _ _ _ _  _ _ _



- -~~~~~~~~ •~~~ -—-~---~~~~~ —~~~~-—------•-—-_--- ~ - --w ~~
-
~~~~

-- - -
~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-_ _
~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘ ———- —- - --- -

- 

_ - 
- - -  

—
~~ 

•

- 14

entries . For N — 1 , this str ucture reduces to that arisi ng fro. the single-
- 

• index model. In general, it assi es that the risky assets are divided into

groups so that members in each group satisfy tb, ass~~~tions of a single-
- - 

Ind ex model. Th. multi-group model discussed in Elton and Gruber [4] and Elton ,

Gruber and Psdberg [ 6 ] gives rise to a covari ance matrix having this -

structure.

In many practical applications , both m (the niasber of indices) and N

(the niasber of groups) are fairly small compared to n (the nomber of risky

assets). Advantage can. be taken of this fact to further reduc e the

- 

- 

computational effort (and in fact the computer storage as well) required by

the proposed approach in solving problems with these structures • To avoid

complicated notatio ns , we choose not to present the technical details .

Two sets of experiments were performed on. a DEC-20 computer at the

computation center in Car negie-Mellon Universi ty. The computations were

I - done in double precision to reduce sound off-errors . The computer codes

were written in FORTRAN and the timings reported are exclusive of inputs

and - output9 .

The first set of experiment s was concerned with the implementation of

the proposed method for treating an rn-index model and an N-group model. The

objective was to test the capability and efficiency of the method for solving

problems of considerably large size. The data were generated as follows:

Each component of the vector d was the same and equal to 1.75/n. The n~~ber

1.75 was used as a control of the total n~mthe r of pivots and the tota l ni ber

of variables at their upper bounds so that these u*mtbers would not become too

small. For an rn-index model , the diagona l entries of £ were sat equal to 2.0.

The entrie s of the matrix L were generated randomly in (-1.0 , 1.0) and the
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components of the vector ~ in (0,1). For an N-group modal, the components of

the vector ~ were generated randomly in (0,10) and those ~f f1 in (- 1 , 1).

The diagonal entries of were equal to 2 ran + 1 where ran mae a rend~~

um ber between 0 and 1. Finall y, the matrix C was equal ~~ ~~T where G

was an N by N random matrix whose entries were random nmbers batveen -1

and 1. The results are sm~~ arized in Tables 1 — 4  bslom.

m # of pivots # of variables # of variables tota l CPU CPU tIme/pivot
between bds. at upper bds. time (in sec.) (in sec.)

5 410 120 49 21.1867 0.0516

10 402 80 72 30.3223 0.0753

15 414 42 92 41.8303 0.1010

20 432 34 99 56 .261 0.1303

25 418 27 100 67.2163 0.161

30 438 26 102 85.852 0.1962

Table 1: Multiple-index model n — 200

m # of pivots # of variables # of variables total CPU CPU time/pivot
between bds. at upper bds. time (in sec.) (in sec.)

5 1230 380 143 
• 

192.4927 0.1565

10 1258 264 209 279.7347 0.2223

15 1259 105 289 364.0687 0.2891

20 1348 56 315 485.9643 0.3604

25 1321 36 326 574.019 0.4344

30 1290 29 330 673.5277 0.522

Table 2: Multiple—index model ii — 600

~- -.-——--.—— —•-•- —•
~~ -.- ——-- — — —-- -.
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~~~~~_; 
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• members # of pivots # variables # variables total CPU CPU time/pivot
in each grp . between bds. at upper bds . time (in sec.) (in Sec.)

20 197 79 15 2.839 0.0144

40 428 164 33 11. 685 0.0273

60 607 263 47 24,418 0.0402

80 805 321 71 42.842 0.0532

100 1026 410 81 68.307 0.0666

Table 3: Multiple-group model N — 5

# .smbers # of pivots # variables # variables total CRY CPU t ime/pivot
in each grp . between bds . at upper bds. time (in 5cc) (in ssc)

20 - 811. 31.7 73 51 .799 0.0639

• 40 1656 628 141 188.314 0.1137

60 24 39 955 216 399.642 0.1228

sd ‘ 3251 1233 300 721.251 0.2218

100 4163 - 1579 353 1 ,088.565 0.2615

Table 4: Multiple—grou p model N — 20

The objective of th. second set of experiments was to compare the pr oposed

method wi th Le~ r.s’s algor ithe for sotiéing problems of the above type . The

code that we used for’ the latter algorithe was called LCPBIG and was w~jteen

at the Systems Optimization Laboratory of the Department of Operations Research

at Stanford University. (The author is grateful to Professor P . W. Cott le

for making this code available .) The data were generated exactly as above ,

except that the upper bounds d~ were equal to 1.35/n. it. compari$on is

_ _ _ _ _ _  
_____ - T T
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sm~~ arized in Tables 5 and 6 below.

n in • of pivots # variables # variables total CPU ti~me (in sec.)
between bds . at upper bds . proposed method Lemke

20 2 39 11 8 .185 1.107

20 14 40 10 9 .777 1.110

30 2 63 17 13 .384 3.930

30 18 56 6 19 2.025 3.073

30 20 65 7 18 2.352 4.027

40 2 89 27 13 .766 9.877 —

40 10 88 14 21 1.763 9.850

40 20 98 12 21 4.067 11.364

Table 3: Comparison for’ an rn-index model

N # members # of # variables # variables total CPU time (in sec.)
in each grp. pivots between bds. at upper bds . proposed method Lenke

2 5 23 7 3 .053 .275

2 10 40 10 10 .128 1.243

2 20 81 23 16 .417 8.400

3 2 11 3 3 .024 .111

3 10 61 15 14 .311 3.678

4 10 87 23 16 .564 9.080

5 8 89 23 17 .632 9.612

Table 6: Comparison for an N-group model
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We point out four remarks .

• 1. The u*mibers of pivots shown in the last two tables are the same for

both algorithms.

2. In all cases , the umber’s in and N are kept fairly small in order to

be consistent with the smallest of the ratios rn/n and N/n in many practical

applications of these models .

3. The data in all the problems solved are extremely dense. In fact , this

is an essential reason why we have compared the two algorithms only on

small problems . (The code LCPBIG was written for solving linear complementarity

problems wi th matrix having six thousand or less nonzer o entries.)

4. The proposed algori thm is rather sensitive on the size of in and N

(whereas Lemke’s algorithm is not) .

From these experiments, we may draw the following two conclus ions :

1. In terms of computation times , the proposed algorithm is consistently

superior to Lemke ’s. In most cases (when rn/n or N/n is small) the former

is several times faster than the latter. The reader is referred to Pang et al.

(151 for a brief explanation based on operation counts of the algorithms.

2. The proposed algorithm is capable of solving large problems in a fairly

efficient manner.

Finally , we point out that in addition to the superiority in computation

times , the proposed algorithm also requires a substantially less amount of

computer storage than Lemke’s algorithm.

— -~~  
_ _ _ _ _ _  - ~IT
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APPENDIX

Here we establish the theorem below. Before doing so , we explain the

notations to be used. Let A be an in by ii matrix. If ~ and ~ are subsets

of (1 ,... m) and t1,...,n) respectively, by A~~ we mean the subsiatrix of A.

whose rows and colimins are indexed by ~ and ~ respectively. If j  E(1 ,...,m),

we denote the j -tb row of A by A~. Similar notations are used for vectors.

Theorem. Consider the solution of the parametric linear complementarity

problem

- C) + X
(:

) ~C AT) ( ;yO ( 1  
~~

°

uTx a ’ vTy _ O

where FERn~~ £5 syosnetric and positive definite , A E R mmn £5 arbitrary,

e is the vector of ones , q is arbitrary and b > 0, by the parametric version

of Graves ’ principal pivoting algorithm. Then all the diagonal pivot entries

are positive. In particular , in a finite number of steps , the algorithm

will terminate with X — 0.

We need the following leimna whose proof is not difficult and thus omitted.

Lemma. Let F and A be as in the theorem. Let ~ and 8 be nonempty subsets

of C1 ,...,n~ and t1 ,...,m) respectively. Then the matrix

p ,A~~~T
13 3  

Y1
5~~~~~~~

3(3 ,6) — ( )
-A53 0

is nonsingular if and only if the matrix A~ has full row rank. In this

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
_
~Ii•

.1
~ 
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case , the matrix ASØF8T~(A~~) T is positive definite and

1 
R(3 ,6) _p;~cA63 )T(a63ç~(A60)T] l %~

B(J,8) — )
(A. ~~‘l (A. )T~~

lA F’’ (A~~F~~(A
63)

T
l~~ 

• 

-

where

6) — F
3~ - F

3~ (A53) TEA F~~ (A63) T1 
- 1A63F~~

is symeetric and positive s.d-definite . Moreover, det B(3,6) is positive .

Proof of the theroem. Consider any pivot step of the algori thm. Let 3
and 6 denote , respectively, the sets of indices of the currently basic x

and y variables before the pivot. With no loss of generality, we may

asblmie that both 3 and 6 are nonempty . Let 3(3 ,6) be the matrix defined j -

in the lemma. It is a rather well-ke.own fact from the theory of pivotal

algebra that B(3 ,6) is nonsingular. Then the current canonical form of the

cotuplementarity system can be written in partitioned form as

_____ _________ 

u
3 

V
5 

x y

b2 3(3 5) 1
y6 6

— current 
____________ ____________ (7)

N 

• 

‘1 

~~~~~~~ • --— -- _~~~~- _ _
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where ~ and ~ are respectively the c~~~lements of 3 and 6 in ~1 ,... ,n)and

f~~~
\_ B(3 6)’’(e f~ \ — ( a 1  

-

~~~~ 

F~~ (A
5~)

T
’~
/ 
;~~~

~~0 ~~~~~~ I~~0) ~~~~ 0 J I t b~)

and

N — 

~om (L~~)T \ - f F~~ (A5~ )T
\ 

B(3 ,6)~~ ,~ 
F~ , (A~3)

T

-A 0 ) 1 - A  I
‘ ~ ‘~‘3 ° ‘ ~ 

-A6~ 0

We divide the proof into four cases.

1. The diagonal pivot entry occurs at a x
3
-row. In th is case , the entry

is H(~ ,6) 31 where j  E j  is such that H(3 ,6)
1
e

3 
— < 0. Since H(3,6) is

symetric and positive semi-definite, the fact that H(3 ,6)
1
e3 

is nonzero

implies that E3,6) 11 is positive (see Cottle (13 e.g.).

2. The diagonal pivot entry occurs at a 75-row. In this case , the entry is

where j ES. Since the matrix (A
63
F~~(A

63)
T]~~ is

positive definite, the desired pivot entry is therefore positive.

3. The diagonal pivot entry occurs at a u
01

-row. In this case , the entry is

F11 - (F~3 (&~ )
T)B(B S)~

L

( 
F
31\ 

where j E cu. It is the Schur complement of

B(3,6) in B(3U (i  3 , 8) (see Cottle (3 1).  This latter matrix B(BU ~ 3 6) ~

nonsingular by the lemma. Hence the desired pivot entry is positive .

4. The diagonal pivot entry occurs at a v -row. In this case , the entry is

where ~ E~ is such that L13E3, 6)e
3 > 0. if the pivot entry 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 
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were zero , then we would have A13R(3,6) — 0 by the symmetry and positive

semi-definiteness of H(3 ,6) (see (1] e.g.). But this is impossible.

-
• Consequently, we conclude that no matter where the next diagonal pivot

entry is, it must be positive. This completes the proof of the theorem.

Acknowledgements: The author’ is grateful to Professor W. T. Ziemba
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